Quivers and the Euclidean Group

Alistair Savage

Department of Mathematics and Statistics
University of Ottawa

FPSAC 2008
Valparaiso-Vifia del Mar, Chile
June 24, 2008

Slides available at www.mathstat.uottawa.ca/”asavag?
For details see arXiv:0712.1597.



The Euclidean group
©000

Euclidean group




The Euclidean group
©000

Euclidean group

Definition (Euclidean group)

Group of orientation-preserving isometries of n-dim Euclidean
space:
E(n) =R" x SO(n)




The Euclidean group
©000

Euclidean group

Definition (Euclidean group)

Group of orientation-preserving isometries of n-dim Euclidean

space:
E(n) =R" x SO(n)

Study (at least for n = 2, 3) predates even concept of group.



The Euclidean group
©000

Euclidean group

Definition (Euclidean group)

Group of orientation-preserving isometries of n-dim Euclidean

space:
E(n) =R" x SO(n)

Study (at least for n = 2, 3) predates even concept of group.

We will focus on E(2) — much still unknown about rep theory.
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Representations of the Euclidean group

e E(2) solvable = all finite-dim irreps are 1-dim

o finite-dim unitary reps (of interest in quantum mechanics) are
completely reducible = isom to direct sum of one-dim reps

@ infinite-dim unitary reps have received considerable attention

e 3 finite-dim nonunitary indecomp reps (not irreducible)

e much less known about these
e play important role in math physics and rep theory of Poincaré

group
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Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = {translations} x Lorentz group

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the
four-momentum of a particle

@ governs internal space-time symmetries of particle

@ massive particles: little group locally isom to O(3)

@ massless particles: little group locally isom to E(2)

\
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A bit more mathematical physics

Gravity
Consider
@ Chern-Simons formulation of Einstein gravity
@ 2+ 1 dimensions
@ space-time with Euclidean signature
@ vanishing cosmological constant

Then phase space of gravity is moduli space of flat
E(2)-connections
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The Euclidean algebra

Recall E(2) = R? x SO(2)

The Euclidean Algebra
¢(2) = complexification of Lie alg of E(2)

Has basis {p, p—,/} and relations

[p+7 p—] = Oa [la P:t] = ip:l:

Representation Theory

SO(2) compact = finite-dim E(2)-modules equiv to finite-dim
¢(2)-modules where [ acts semisimply with integer eigenvalues

We use term ¢(2)-module to mean such a module




Euclidean algebra
0®00

Weight decompositions

V an ¢(2)-module



Euclidean algebra
0®00

Weight decompositions

V an ¢(2)-module
We have weight decomposition into /-eigenspaces

V=P Vi, Vi={veV|l-v=kv}
keZ



Euclidean algebra
0®00

Weight decompositions

V an ¢(2)-module
We have weight decomposition into /-eigenspaces

V=P Vi, Vi={veV|l-v=kv}
keZ

and
p+Vik C Vip1, p-Vik C Vi



Euclidean algebra
0®00

Weight decompositions

V an ¢(2)-module
We have weight decomposition into /-eigenspaces

V=P Vi, Vi={veV|l-v=kv}
keZ

and
p+Vik C Vip1, p-Vik C Vi

We define
dim V = (dim Vi)kez € (Zs0)”
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Modified enveloping algebra

U = universal enveloping algebra of ¢(2)
U*, U™, U° subalgebras generated by p,, p_, /
Have triangular decomp U = Ut @ U° @ U~

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra

U=uUt® (@Cak> ® U~

kEZ

with multiplication
aka) = Ok/ak

P+dk = ak+1P+, P—ak = dk-1P—,
P+P—ak = pP—P+3ak
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Representation theory

U=Ut® (@(Cak> ® U~

keZ
ax ~ projection to kth weight space

Definition

A U-module is unital if
Q@ VveV, av=0foralmostall ke Z

U-module ~ U-module with weight decomp

Proposition

Mod U = Mod U = Mod ¢(2)




Preprojective algebras
©0000000

Quivers

quiver = directed graph



Preprojective algebras
©0000000

Quivers

quiver = directed graph

| = vertex set
H = (directed) edge set

out(h) 4 in(h)
——— e



Preprojective algebras
©0000000

Quivers

quiver = directed graph

| = vertex set
H = (directed) edge set

out(h) 4 in(h)

*— 0
Representations of quivers




Preprojective algebras
©0000000

Quivers

quiver = directed graph
| = vertex set
H = (directed) edge set

out(h) 4 in(h)

*— 0
Representations of quivers

o /-graded vector space V = (V)¢




Preprojective algebras
©0000000

Quivers

quiver = directed graph
| = vertex set
H = (directed) edge set

out(h) 4 in(h)

*— 0
Representations of quivers

o /-graded vector space V = (V)¢

o linear map xp, : Viug(h)—in(n) for each h € H




Preprojective algebras
©0000000

Quivers

quiver = directed graph
| = vertex set
H = (directed) edge set

out(h) 4 in(h)

*— 0
Representations of quivers

o /-graded vector space V = (V)¢

o linear map xp, : Viug(h)—in(n) for each h € H

rep(Q, V) = @ HomC(Vout(h)a Vln(h))
heH
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H={hi|a<i<b—1}, out(h)=i, in(hj)=i+1
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Quivers

The quiver Q,p

I={keZ|a<k<b}
H={hi|a<i<b-—1}, out(h)=i, in(h)=i+1

a a+l at2 b—2 b—1 b

The quiver Qs
| =7
H = {h,’ | | € Z}, out(h,-) =1, in(h,-) =i+1

N,




Preprojective algebras
00®00000

Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation




Preprojective algebras
00®00000

Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation

cat of reps of @ = Mod CQ




Preprojective algebras
00®00000

Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation

cat of reps of @ = Mod CQ

v

Double quiver

Q* = double quiver of @




Preprojective algebras
00®00000

Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation

cat of reps of @ = Mod CQ

v

Double quiver

Q* = double quiver of @

lo = la,
Hg- = HoUHq, Hq={h|he Hq}




Preprojective algebras
00®00000

Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation

cat of reps of @ = Mod CQ

v

Double quiver

Q* = double quiver of @

lo = la,
Hg- = HoUHq, Hq={h|he Hq}

out(h) p  in(h) out(h) f  in(h)
oO————>0 o<— O
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Preprojective algebra

For i € I, define

= Y  hh— > hh

heH, out(h)=i heH,in(h)=i

Preprojective algebra

P(Q)=CQ*/J
J = two-sided ideal generated by r;, i € /

Representations of the preprojective algebra

mod(P(Q), V) = {P(Q)-modules with underlying v.s. V}
Equivalent to set of elements of rep(Q*, V) such that

Z XpXh — Z XpXp = 0 Viel

heH, out(h)=i heH, in(h)=i
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Representation theory of the preprojective algebra

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:
Q@ P(Q) is finite-dimensional
@ All elements of rep(P(Q), V) are nilpotent
@ Q is a Dynkin quiver (underlying graph of ADE type)

If Q is a finite quiver then
Q@ P(Q) is of finite rep type iff Q is of Dynkin type A,, n < 4
@ P(Q) is of tame rep type iff Q is of Dynkin type As or Dy
@ P(Q) is of wild rep type for other types

N
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Representation theory of P(Q,5) and P(Qx)

@ Qs has finite rep type iff b—a < 3, and all reps are nilpotent

@ Qo is of wild rep type and all reps are nilpotent
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Preprojective algebras and the Euclidean algebra

The map ¢ : CQ% — U given by (e; = trivial path at /)
P(ei) = aj, Y(hi) = pyaj = aip1py, (M) =aip- = p_aip
extends to a surjective map of algebras with kernel J. Thus

P(Qs) = U

Corollary

Mod ¢(2) = Mod P(Qx)

and
Mod., 5 ¢(2) = Mod P(Q, )

where Mod, 1, ¢(2) is category of ¢(2)-modules with weights lying
between a and b
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Representation theory of the Euclidean algebra

@ ¢(2) (and hence E(2)) has wild representation type

e for 0 < b— a <3, 3 a finite number of isom classes of
indecomposable ¢(2)-modules whose weights lie between a
and b
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Lusztig quiver variety

Definition (Lusztig quiver variety)
Av q is set of all nilpotent (x4) € mod(P(Q), V)

Recall, for Q of Dynkin type

mod(P(Q), V) =Av.q

Relation to Kac-Moody algebras

Let go = Kac-Moody algebra whose Dynkin graph is underlying
graph of Q.

# irred comps of Ay g = dim of (— ) (dim V;)a;)-weight space of
U(ge)~
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Nakajima quiver variety

Let @ be Qs or Qs p.
For /-graded vec spaces V and W, define

Lo(V, W) = Ay q & €D Homc(W;, Vi)
iel

For (x,s) = ((xn)neH, (si)icr) we say
o [-graded S C V is x-invariant if

Xh(Sout(h)) c Sin(h) Vhe H

@ (x,s) is stable if A proper x-invariant subspace of V
containing im s
Let Lo(V, W) = set of stable points
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Nakajima quiver variety

Gv = [];c; GL(V;) acts on Lg(V, W) by

g - (x,5) = ((8in(h)XnEons(y)- (£151))

Stabilizer in Gy of a stable point is trivial

Definition (Nakajima quiver variety)

Lo(V, W) = Lo(V, W)*/Gy
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Nakajima quiver varieties and Kac-Moody algebras

D Hiop(La(V, W)) = irrep of g of hw > ~(dim W;)w;
14 iel

where w; are fundamental weights

Hiop(Lo(V, W)) = (dim Wj)w; — > _(dim V;)a; weight space
iel iel

# irred comps of Lo(V, W) = dim of weight space
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Representation theory of ¢(2)

@ recall ¢(2) has wild rep type

@ restrict attention to subclasses of modules and attempt a
classification

@ impose restriction on number of generators of a module

@ moduli spaces of such modules related to Nakajima quiver
varieties
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Moduli spaces of representations of ¢(2)

Let V be a rep of ¢(2)
We say {u1,...,u,} C V is a set of generators of V if

© each u; is a weight vector

@ A proper submodule of V containing all u;

Definition
For v,w € (Zx0)%, let E(v,w) be set of all

(V, () kez, 1<i<wy )

where
e Vis an ¢(2)-module with dimV =v

° (UL)keZ 1<j<w, is a set of generators of V with wt uf( =k
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We say . .
(V. (i) ~ (V. (%))
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Let
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There is a natural one-to-one correspondence
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ifdmV =v, dmW =w
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Moduli spaces of representations of ¢(2)

There is a natural one-to-one correspondence
Elv,w) « Lo (V, W)

ifdmV =v, dmW =w

Idea of proof

Given (V, (uf()) € E(v,w), define a point (x,s) € Lg._(V, W) by

| A\

Xh;:p+’Vi7 Xﬁi:p*|vi+1’ kel
swi)=ul, keZ, 1<j<w

where {Wi}lﬂgwk is a basis of W).. Then

generating set < stability = ~<« Gy — orbits




Conclusion
®000

Remarks




Conclusion
®000

Remarks

@ relationship between rep theory of Euclidean group and rep
theory of sl (or groups SL(n))



Remarks

@ relationship between rep theory of Euclidean group and rep
theory of sl (or groups SL(n))

@ moduli space of reps of Euclidean group along with a set of
generators closely related to rep theory of sl and SL(n)

Conclusion
®000



Conclusion
®000

Remarks

@ relationship between rep theory of Euclidean group and rep
theory of sl (or groups SL(n))

@ moduli space of reps of Euclidean group along with a set of
generators closely related to rep theory of sl and SL(n)

@ although Euclidean group has wild rep type, we have method
of approaching classification:



Conclusion
®000

Remarks

@ relationship between rep theory of Euclidean group and rep
theory of sl (or groups SL(n))

@ moduli space of reps of Euclidean group along with a set of
generators closely related to rep theory of sl and SL(n)

@ although Euclidean group has wild rep type, we have method
of approaching classification:
e fix cardinality and weights of a generating set



Conclusion
®000

Remarks

@ relationship between rep theory of Euclidean group and rep
theory of sl (or groups SL(n))

@ moduli space of reps of Euclidean group along with a set of
generators closely related to rep theory of sl and SL(n)

@ although Euclidean group has wild rep type, we have method
of approaching classification:
e fix cardinality and weights of a generating set
e resulting moduli space enumerated by countable number of
varieties — one variety for reps of each graded dimension
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Further directions

Positive characteristic

o consider Euclidean group over field of characteristic p

e weights now lie in Z/pZ instead of Z

@ category of reps equivalent to category of reps of preprojective
algebra of quiver of affine type A,_1

@ quiver varieties related to moduli spaces of solutions to
anti-self-dual Yang-Mills equations and Hilbert schemes of
points in C?
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Further directions

Crystals and Jordan-Holder decompositions

@ can define crystal structure on set of irred comps of Lusztig
and Nakajima quiver varieties

@ each irred comp can be identified with a sequence of crystal
operators

@ sequence corresponds to Jordan-Holder decomposition of
¢(2)-modules
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