Quivers and the Euclidean Group

Alistair Savage

Department of Mathematics and Statistics University of Ottawa

FPSAC 2008 Valparaiso-Viña del Mar, Chile June 24, 2008

Slides available at www.mathstat.uottawa.ca/~asavag2 For details see arXiv:0712.1597.

Definition (Euclidean group)

Group of orientation-preserving isometries of *n*-dim Euclidean space:

$$E(n) = \mathbb{R}^n \times SO(n)$$

Definition (Euclidean group)

Group of orientation-preserving isometries of *n*-dim Euclidean space:

$$E(n) = \mathbb{R}^n \rtimes SO(n)$$

Study (at least for n = 2,3) predates even concept of group.

Definition (Euclidean group)

Group of orientation-preserving isometries of *n*-dim Euclidean space:

$$E(n) = \mathbb{R}^n \times SO(n)$$

Study (at least for n = 2,3) predates even concept of group.

We will focus on E(2) – much still unknown about rep theory.

• E(2) solvable \Rightarrow all finite-dim irreps are 1-dim

- E(2) solvable \Rightarrow all finite-dim irreps are 1-dim
- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible ⇒ isom to direct sum of one-dim reps

- E(2) solvable \Rightarrow all finite-dim irreps are 1-dim
- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible ⇒ isom to direct sum of one-dim reps
- infinite-dim unitary reps have received considerable attention

- E(2) solvable \Rightarrow all finite-dim irreps are 1-dim
- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible ⇒ isom to direct sum of one-dim reps
- infinite-dim unitary reps have received considerable attention
- ∃ finite-dim nonunitary indecomp reps (not irreducible)

- E(2) solvable \Rightarrow all finite-dim irreps are 1-dim
- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible ⇒ isom to direct sum of one-dim reps
- infinite-dim unitary reps have received considerable attention
- ∃ finite-dim nonunitary indecomp reps (not irreducible)
 - much less known about these

- E(2) solvable \Rightarrow all finite-dim irreps are 1-dim
- finite-dim unitary reps (of interest in quantum mechanics) are completely reducible ⇒ isom to direct sum of one-dim reps
- infinite-dim unitary reps have received considerable attention
- ∃ finite-dim nonunitary indecomp reps (not irreducible)
 - much less known about these
 - play important role in math physics and rep theory of Poincaré group

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = $\{translations\} \times Lorentz group$

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = $\{translations\} \times Lorentz group$

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the four-momentum of a particle

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = $\{translations\} \times Lorentz group$

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the four-momentum of a particle

• governs internal space-time symmetries of particle

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = $\{translations\} \times Lorentz group$

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the four-momentum of a particle

- governs internal space-time symmetries of particle
- massive particles: little group locally isom to O(3)

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = $\{translations\} \times Lorentz group$

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the four-momentum of a particle

- governs internal space-time symmetries of particle
- massive particles: little group locally isom to O(3)
- massless particles: little group locally isom to E(2)

A bit more mathematical physics

Gravity

A bit more mathematical physics

Gravity

Consider

- Chern-Simons formulation of Einstein gravity
- 2 + 1 dimensions
- space-time with Euclidean signature
- vanishing cosmological constant

A bit more mathematical physics

Gravity

Consider

- Chern-Simons formulation of Einstein gravity
- 2 + 1 dimensions
- space-time with Euclidean signature
- vanishing cosmological constant

Then phase space of gravity is moduli space of flat E(2)-connections

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+, p_-, I\}$

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+,p_-,I\}$ and relations

$$[p_+, p_-] = 0, \quad [I, p_{\pm}] = \pm p_{\pm}$$

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+,p_-,I\}$ and relations

$$[p_+, p_-] = 0, \quad [I, p_{\pm}] = \pm p_{\pm}$$

Representation Theory

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+,p_-,I\}$ and relations

$$[p_+, p_-] = 0, \quad [I, p_{\pm}] = \pm p_{\pm}$$

Representation Theory

SO(2) compact

Recall
$$E(2) = \mathbb{R}^2 \times SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+,p_-,I\}$ and relations

$$[p_+, p_-] = 0, \quad [I, p_{\pm}] = \pm p_{\pm}$$

Representation Theory

SO(2) compact \Rightarrow finite-dim E(2)-modules equiv to finite-dim $\mathfrak{e}(2)$ -modules where I acts semisimply with integer eigenvalues

Recall
$$E(2) = \mathbb{R}^2 \rtimes SO(2)$$

The Euclidean Algebra

e(2) = complexification of Lie alg of E(2)

Has basis $\{p_+, p_-, I\}$ and relations

$$[p_+, p_-] = 0, \quad [I, p_{\pm}] = \pm p_{\pm}$$

Representation Theory

SO(2) compact \Rightarrow finite-dim E(2)-modules equiv to finite-dim e(2)-modules where I acts semisimply with integer eigenvalues

We use term e(2)-module to mean such a module

V an $\mathfrak{e}(2)$ -module

V an e(2)-module

We have weight decomposition into I-eigenspaces

$$V = \bigoplus_{k \in \mathbb{Z}} V_k, \quad V_k = \{ v \in V \mid I \cdot v = kv \}$$

V an e(2)-module

We have weight decomposition into *I*-eigenspaces

$$V = \bigoplus_{k \in \mathbb{Z}} V_k, \quad V_k = \{ v \in V \mid I \cdot v = kv \}$$

and

$$p_+V_k\subseteq V_{k+1},\quad p_-V_k\subseteq V_{k-1}$$

V an e(2)-module

We have weight decomposition into I-eigenspaces

$$V = \bigoplus_{k \in \mathbb{Z}} V_k, \quad V_k = \{ v \in V \mid I \cdot v = kv \}$$

and

$$p_+V_k\subseteq V_{k+1},\quad p_-V_k\subseteq V_{k-1}$$

We define

$$\dim V = (\dim V_k)_{k \in \mathbb{Z}} \in (\mathbb{Z}_{\geq 0})^{\mathbb{Z}}$$

Modified enveloping algebra

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

Modified enveloping algebra

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

Have triangular decomp $U\cong U^+\otimes U^0\otimes U^-$

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

Have triangular decomp $U \cong U^+ \otimes U^0 \otimes U^-$

Modified enveloping algebra

The Euclidean group

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

Have triangular decomp $U \cong U^+ \otimes U^0 \otimes U^-$

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra

The Euclidean group

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

Have triangular decomp $U \cong U^+ \otimes U^0 \otimes U^-$

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra

$$\tilde{U} = U^+ \otimes \left(\bigoplus_{k \in \mathbb{Z}} \mathbb{C} a_k \right) \otimes U^-$$

The Euclidean group

 $U = \text{universal enveloping algebra of } \mathfrak{e}(2)$

 U^+ , U^- , U^0 subalgebras generated by p_+ , p_- , I

Have triangular decomp $U\cong U^+\otimes U^0\otimes U^-$

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra

$$\tilde{U} = U^+ \otimes \left(\bigoplus_{k \in \mathbb{Z}} \mathbb{C} a_k \right) \otimes U^-$$

Preprojective algebras

with multiplication

$$a_k a_l = \delta_{kl} a_k$$
 $p_+ a_k = a_{k+1} p_+, \quad p_- a_k = a_{k-1} p_-,$
 $p_+ p_- a_k = p_- p_+ a_k$

$$ilde{U} = U^+ \otimes \left(igoplus_{k \in \mathbb{Z}} \mathbb{C} a_k
ight) \otimes U^-$$

 $a_k \sim \text{projection to } k \text{th weight space}$

$$ilde{U} = U^+ \otimes \left(igoplus_{k \in \mathbb{Z}} \mathbb{C} a_k
ight) \otimes U^-$$

 $a_k \sim \text{projection to } k \text{th weight space}$

Definition

A \tilde{U} -module is unital if

$$ilde{U} = U^+ \otimes \left(igoplus_{k \in \mathbb{Z}} \mathbb{C} a_k
ight) \otimes U^-$$

 $a_k \sim \text{projection to } k \text{th weight space}$

Definition

A \tilde{U} -module is unital if

 $\mathbf{0} \ \forall v \in V, \ a_k v = 0 \text{ for almost all } k \in \mathbb{Z}$

$$ilde{U} = U^+ \otimes \left(igoplus_{k \in \mathbb{Z}} \mathbb{C} a_k
ight) \otimes U^-$$

 $a_k \sim \text{projection to } k \text{th weight space}$

Definition

A \tilde{U} -module is unital if

- $\mathbf{0} \ \forall v \in V, \ a_k v = 0 \text{ for almost all } k \in \mathbb{Z}$

$$\tilde{U} = U^+ \otimes \left(\bigoplus_{k \in \mathbb{Z}} \mathbb{C} a_k \right) \otimes U^-$$

 $a_k \sim \text{projection to } k \text{th weight space}$

Definition

A \tilde{U} -module is unital if

- $\mathbf{0} \ \forall v \in V, \ a_k v = 0 \text{ for almost all } k \in \mathbb{Z}$

 $ilde{\it U}$ -module $\sim \it U$ -module with weight decomp

$ilde{U} = U^+ \otimes \left(igoplus_{k \in \mathbb{Z}} \mathbb{C} a_k ight) \otimes U^-$

 $a_k \sim \text{projection to } k \text{th weight space}$

Definition

The Euclidean group

A \tilde{U} -module is unital if

- $v \in V$, $a_k v = 0$ for almost all $k \in \mathbb{Z}$
- $v \in V, \sum_{k \in \mathbb{Z}} a_k v = v$

U-module $\sim U$ -module with weight decomp

Proposition

 $\mathsf{Mod}\, \tilde{U} \cong \mathsf{Mod}\, U \cong \mathsf{Mod}\, \mathfrak{e}(2)$

Quivers

 $\mathsf{quiver} = \mathsf{directed} \ \mathsf{graph}$

Quivers

quiver = directed graph

$$Q = (I, H)$$

I = vertex set

H = (directed) edge set

$$out(h)$$
 h $in(h)$

quiver = directed graph

$$Q = (I, H)$$

I = vertex set

H = (directed) edge set

$$out(h)$$
 h $in(h)$

Representations of quivers

The Euclidean group

quiver = directed graph

$$Q = (I, H)$$

I = vertex set

H = (directed) edge set

$$\operatorname{out}(h)$$
 h $\operatorname{in}(h)$

Representations of quivers

• *I*-graded vector space $V = (V_i)_{i \in I}$

The Euclidean group

quiver = directed graph

Preprojective algebras

•0000000

$$Q = (I, H)$$

I = vertex set

H = (directed) edge set

$$out(h)$$
 h $in(h)$

Representations of quivers

- I-graded vector space $V = (V_i)_{i \in I}$
- linear map $x_h : V_{\text{out}(h) \to \text{in}(h)}$ for each $h \in H$

The Euclidean group

quiver = directed graph

$$Q = (I, H)$$

I = vertex set

H = (directed) edge set

$$out(h)$$
 h $in(h)$

Representations of quivers

- I-graded vector space $V = (V_i)_{i \in I}$
- linear map $x_h: V_{\text{out}(h) \to \text{in}(h)}$ for each $h \in H$

$$\operatorname{rep}(\mathit{Q},\mathit{V}) = \bigoplus_{\mathit{h} \in \mathit{H}} \mathsf{Hom}_{\mathbb{C}}(\mathit{V}_{\mathrm{out}(\mathit{h})},\mathit{V}_{\mathrm{in}(\mathit{h})})$$

Quivers

The quiver $Q_{a,b}$

$$I = \{k \in \mathbb{Z} \mid a \le k \le b\}$$

$$H = \{h_i \mid a \le i \le b - 1\}, \quad \text{out}(h_i) = i, \text{ in}(h_i) = i + 1$$

$$a \quad a+1 \quad a+2 \quad b-2 \quad b-1 \quad b \quad b = 1$$

$$h_a \quad h_{a+1} \quad h_{a+1} \quad h_{b-2} \quad h_{b-1}$$

Quivers

The quiver $Q_{a,b}$

$$I = \{k \in \mathbb{Z} \mid a \le k \le b\}$$

$$H = \{h_i \mid a \le i \le b - 1\}, \quad \text{out}(h_i) = i, \text{ in}(h_i) = i + 1$$

$$a \quad a+1 \quad a+2 \quad b-2 \quad b-1 \quad b \quad b = 1$$

$$h_a \quad h_{a+1} \quad h_{a+1} \quad h_{b-2} \quad h_{b-1} \quad h_{b-1}$$

The quiver Q_{∞}

Path algebra

 $\mathbb{C} Q=$ algebra spanned by paths with multiplication given by concatenation

Path algebra

 $\mathbb{C} Q=$ algebra spanned by paths with multiplication given by concatenation

cat of reps of $Q\cong\operatorname{\mathbf{Mod}}
olimits{\mathbb C} Q$

Path algebra

 $\mathbb{C}Q=$ algebra spanned by paths with multiplication given by concatenation

cat of reps of $Q\cong\operatorname{\mathsf{Mod}}\nolimits\mathbb{C} Q$

Double quiver

 $Q^* = \text{double quiver of } Q$

Path algebra

 $\mathbb{C}Q=$ algebra spanned by paths with multiplication given by concatenation

cat of reps of $Q\cong\operatorname{\mathsf{Mod}}\nolimits\mathbb{C} Q$

Double quiver

 $Q^* =$ double quiver of Q

$$I_{Q^*} = I_Q,$$
 $H_{Q^*} = H_Q \cup \bar{H}_Q, \quad \bar{H}_Q = \{\bar{h} \mid h \in H_Q\}$

Path algebra

 $\mathbb{C}Q=$ algebra spanned by paths with multiplication given by concatenation

cat of reps of $Q\cong\operatorname{\mathsf{Mod}}
olimits{\mathbb C} Q$

Double quiver

$$Q^* =$$
double quiver of Q

$$I_{Q^*} = I_Q,$$
 $H_{Q^*} = H_Q \cup \bar{H}_Q, \quad \bar{H}_Q = \{\bar{h} \mid h \in H_Q\}$

$$\operatorname{out}(h)$$
 h $\operatorname{in}(h)$ $\operatorname{out}(h)$ \overline{h} $\operatorname{in}(h)$

For $i \in I$, define

$$r_i = \sum_{h \in H, \, \text{out}(h)=i} \bar{h}h - \sum_{h \in H, \, \text{in}(h)=i} h\bar{h}$$

For $i \in I$, define

$$r_i = \sum_{h \in H, \, \text{out}(h)=i} \bar{h}h - \sum_{h \in H, \, \text{in}(h)=i} h\bar{h}$$

Preprojective algebra

$$P(Q) = \mathbb{C}Q^*/J$$

 $J = \text{two-sided ideal generated by } r_i, i \in I$

The Euclidean group

For $i \in I$, define

$$r_i = \sum_{h \in H, \operatorname{out}(h)=i} \bar{h}h - \sum_{h \in H, \operatorname{in}(h)=i} h\bar{h}$$

Preprojective algebras

00000000

Preprojective algebra

$$P(Q) = \mathbb{C}Q^*/J$$

 $J = \text{two-sided ideal generated by } r_i, i \in I$

Representations of the preprojective algebra

For $i \in I$, define

The Euclidean group

$$r_i = \sum_{h \in H, \, \text{out}(h)=i} \bar{h}h - \sum_{h \in H, \, \text{in}(h)=i} h\bar{h}$$

Preprojective algebras

00000000

Preprojective algebra

$$P(Q) = \mathbb{C}Q^*/J$$

 $J = \text{two-sided ideal generated by } r_i, i \in I$

Representations of the preprojective algebra

 $\operatorname{mod}(P(Q), V) = \{P(Q) \text{-modules with underlying v.s. } V\}$

For $i \in I$, define

The Euclidean group

$$r_i = \sum_{h \in H, \, \text{out}(h)=i} \bar{h}h - \sum_{h \in H, \, \text{in}(h)=i} h\bar{h}$$

Preprojective algebra

$$P(Q) = \mathbb{C}Q^*/J$$

 $J = \text{two-sided ideal generated by } r_i, i \in I$

Representations of the preprojective algebra

 $\operatorname{mod}(P(Q), V) = \{P(Q) \text{-modules with underlying v.s. } V\}$ Equivalent to set of elements of rep(Q^* , V) such that

$$\sum_{h \in H, \, \text{out}(h) = i} x_{\overline{h}} x_h - \sum_{h \in H, \, \text{in}(h) = i} x_h x_{\overline{h}} = 0 \quad \forall i \in I$$

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- \bullet P(Q) is finite-dimensional
- ② All elements of rep(P(Q), V) are nilpotent

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- \bullet P(Q) is finite-dimensional
- 2 All elements of rep(P(Q), V) are nilpotent
- \bigcirc Q is a Dynkin quiver (underlying graph of ADE type)

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- \bullet P(Q) is finite-dimensional
- 2 All elements of rep(P(Q), V) are nilpotent
- \bigcirc Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- ② All elements of rep(P(Q), V) are nilpotent
- \bigcirc Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

1 P(Q) is of finite rep type iff Q is of Dynkin type A_n , $n \le 4$

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- ② All elements of rep(P(Q), V) are nilpotent
- \bigcirc Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

- **1** P(Q) is of finite rep type iff Q is of Dynkin type A_n , $n \le 4$
- ② P(Q) is of tame rep type iff Q is of Dynkin type A_5 or D_4

Representation theory of the preprojective algebra

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

- 2 All elements of rep(P(Q), V) are nilpotent
- \bigcirc Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

- **1** P(Q) is of finite rep type iff Q is of Dynkin type A_n , $n \le 4$
- ② P(Q) is of tame rep type iff Q is of Dynkin type A_5 or D_4

Representation theory of $P(Q_{a,b})$ and $P(Q_{\infty})$

Corollary

Representation theory of $P(Q_{a,b})$ and $P(Q_{\infty})$

Corollary

• $Q_{a,b}$ has finite rep type iff $b-a \leq 3$, and all reps are nilpotent

Representation theory of $P(Q_{a,b})$ and $P(Q_{\infty})$

Corollary

- $Q_{a,b}$ has finite rep type iff $b-a \le 3$, and all reps are nilpotent
- ullet Q_{∞} is of wild rep type and all reps are nilpotent

Theorem

Theorem

The map $\psi: \mathbb{C} \mathcal{Q}^*_\infty o ilde{\mathcal{U}}$

Theorem

The map $\psi: \mathbb{C} \mathcal{Q}_{\infty}^* \to \tilde{U}$ given by $(\epsilon_i = \text{trivial path at } i)$

$$\psi(\epsilon_i) = a_i, \quad \psi(h_i) = p_+ a_i = a_{i+1} p_+, \quad \psi(\bar{h}_i) = a_i p_- = p_- a_{i+1}$$

Theorem

The map $\psi: \mathbb{C} Q_{\infty}^* \to \tilde{U}$ given by $(\epsilon_i = \text{trivial path at } i)$

$$\psi(\epsilon_i) = a_i, \quad \psi(h_i) = p_+ a_i = a_{i+1} p_+, \quad \psi(\bar{h}_i) = a_i p_- = p_- a_{i+1}$$

extends to a surjective map of algebras with kernel J.

Theorem

The map $\psi:\mathbb{C}\mathcal{Q}^*_\infty o \tilde{\mathcal{U}}$ given by $(\epsilon_i=$ trivial path at i)

$$\psi(\epsilon_i) = a_i, \quad \psi(h_i) = p_+ a_i = a_{i+1} p_+, \quad \psi(\bar{h}_i) = a_i p_- = p_- a_{i+1}$$

extends to a surjective map of algebras with kernel J. Thus

$$P(Q_{\infty}) \cong \tilde{U}$$

Theorem

The Euclidean group

The map $\psi: \mathbb{C}Q_{\infty}^* \to \tilde{U}$ given by $(\epsilon_i = \text{trivial path at } i)$

$$\psi(\epsilon_i) = a_i, \quad \psi(h_i) = p_+ a_i = a_{i+1} p_+, \quad \psi(\bar{h}_i) = a_i p_- = p_- a_{i+1}$$

Preprojective algebras

00000000

extends to a surjective map of algebras with kernel J. Thus

$$P(Q_{\infty})\cong \tilde{U}$$

Corollary

$$\mathsf{Mod}\,\mathfrak{e}(2)\cong\mathsf{Mod}\,P(Q_\infty)$$

Theorem

The Euclidean group

The map $\psi: \mathbb{C}Q_{\infty}^* \to \tilde{U}$ given by $(\epsilon_i = \text{trivial path at } i)$

$$\psi(\epsilon_i) = a_i, \quad \psi(h_i) = p_+ a_i = a_{i+1} p_+, \quad \psi(\bar{h}_i) = a_i p_- = p_- a_{i+1}$$

extends to a surjective map of algebras with kernel J. Thus

$$P(Q_{\infty})\cong \tilde{U}$$

Corollary 1 4 1

$$\mathsf{Mod}\,\mathfrak{e}(2)\cong\mathsf{Mod}\,P(Q_\infty)$$

and

$$\mathsf{Mod}_{a,b}\,\mathfrak{e}(2)\cong\mathsf{Mod}\,P(Q_{a,b})$$

where $\mathbf{Mod}_{a,b} \mathfrak{e}(2)$ is category of $\mathfrak{e}(2)$ -modules with weights lying between a and b

Representation theory of the Euclidean algebra

Theorem

Representation theory of the Euclidean algebra

Theorem

• $\mathfrak{e}(2)$ (and hence E(2)) has wild representation type

Representation theory of the Euclidean algebra

Theorem

- $\mathfrak{e}(2)$ (and hence E(2)) has wild representation type
- for $0 \le b-a \le 3$, \exists a finite number of isom classes of indecomposable $\mathfrak{e}(2)$ -modules whose weights lie between a and b

Definition (Lusztig quiver variety)

 $\Lambda_{V,Q}$ is set of all nilpotent $(x_h) \in \operatorname{mod}(P(Q),V)$

Recall, for Q of Dynkin type

$$\mathrm{mod}(P(Q),V)=\Lambda_{V,Q}$$

Definition (Lusztig quiver variety)

 $\Lambda_{V,Q}$ is set of all nilpotent $(x_h) \in \operatorname{mod}(P(Q),V)$

Recall, for Q of Dynkin type

$$\operatorname{mod}(P(Q),V)=\Lambda_{V,Q}$$

Relation to Kac-Moody algebras

Let $\mathfrak{g}_Q = \text{Kac-Moody}$ algebra whose Dynkin graph is underlying graph of Q.

Definition (Lusztig quiver variety)

 $\Lambda_{V,Q}$ is set of all nilpotent $(x_h) \in \operatorname{mod}(P(Q),V)$

Recall, for Q of Dynkin type

$$\mathrm{mod}(P(Q),V)=\Lambda_{V,Q}$$

Relation to Kac-Moody algebras

Let $\mathfrak{g}_Q = \text{Kac-Moody algebra whose Dynkin graph is underlying graph of } Q$.

irred comps of $\Lambda_{V,Q}=\dim$ of $(-\sum (\dim V_i)\alpha_i)$ -weight space of $U(\mathfrak{g}_Q)^-$

Let Q be Q_{∞} or $Q_{a,b}$.

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W,

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For
$$(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$$

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For
$$(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$$
 we say

• *I*-graded $S \subseteq V$ is *x*-invariant

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For
$$(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$$
 we say

• *I*-graded $S \subseteq V$ is *x*-invariant if

$$x_h(S_{\mathrm{out}(h)}) \subseteq S_{\mathrm{in}(h)} \ \forall h \in H$$

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For
$$(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$$
 we say

• *I*-graded $S \subseteq V$ is *x*-invariant if

$$x_h(S_{\mathrm{out}(h)}) \subseteq S_{\mathrm{in}(h)} \ \forall h \in H$$

• (x, s) is stable

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For $(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$ we say

• *I*-graded $S \subseteq V$ is *x*-invariant if

$$x_h(S_{\mathrm{out}(h)}) \subseteq S_{\mathrm{in}(h)} \ \forall h \in H$$

(x,s) is stable if ∄ proper x-invariant subspace of V containing im s

Let Q be Q_{∞} or $Q_{a,b}$.

For I-graded vec spaces V and W, define

$$L_Q(V,W) = \Lambda_{V,Q} \oplus \bigoplus_{i \in I} \mathsf{Hom}_{\mathbb{C}}(W_i,V_i)$$

For
$$(x, s) = ((x_h)_{h \in H}, (s_i)_{i \in I})$$
 we say

• *I*-graded $S \subseteq V$ is *x*-invariant if

$$x_h(S_{\mathrm{out}(h)}) \subseteq S_{\mathrm{in}(h)} \ \forall h \in H$$

(x, s) is stable if ∄ proper x-invariant subspace of V containing im s

Let $L_Q(V, W)^{st}$ = set of stable points

$$G_V = \prod_{i \in I} \mathit{GL}(V_i)$$
 acts on $L_Q(V,W)$ by

$$G_V=\prod_{i\in I}GL(V_i)$$
 acts on $L_Q(V,W)$ by
$$g\cdot (x,s)=((g_{\mathrm{in}(h)}\!\!\times_h\!\!g_{\mathrm{out}(h)}^{-1}),(g_is_i))$$

Stabilizer in G_V of a stable point is trivial

$$G_V=\prod_{i\in I}GL(V_i)$$
 acts on $L_Q(V,W)$ by
$$g\cdot(x,s)=((g_{\mathrm{in}(h)}x_hg_{\mathrm{out}(h)}^{-1}),(g_is_i))$$

Stabilizer in G_V of a stable point is trivial

Definition (Nakajima quiver variety)

$$\mathcal{L}_Q(V,W) = L_Q(V,W)^{st}/G_V$$

$$\bigoplus_V H_{\mathsf{top}}(\mathcal{L}_Q(V,W)) \cong \mathsf{irrep} \; \mathsf{of} \; \mathfrak{g}_Q \; \mathsf{of} \; \mathsf{hw} \; \sum_{i \in I} (\mathsf{dim} \; W_i) \omega_i$$

where ω_i are fundamental weights

$$\bigoplus_V H_{\mathsf{top}}(\mathcal{L}_Q(V,W)) \cong \mathsf{irrep} \; \mathsf{of} \; \mathfrak{g}_Q \; \mathsf{of} \; \mathsf{hw} \; \sum_{i \in I} (\dim W_i) \omega_i$$

where ω_i are fundamental weights

$$H_{\operatorname{top}}(\mathcal{L}_Q(V,W)) = \sum_{i \in I} (\dim W_i) \omega_i - \sum_{i \in I} (\dim V_i) \alpha_i$$
 weight space

$$\bigoplus_V H_{\mathsf{top}}(\mathcal{L}_Q(V,W)) \cong \mathsf{irrep} \; \mathsf{of} \; \mathfrak{g}_Q \; \mathsf{of} \; \mathsf{hw} \; \sum_{i \in I} (\mathsf{dim} \; W_i) \omega_i$$

where ω_i are fundamental weights

$$H_{\mathsf{top}}(\mathcal{L}_Q(V,W)) = \sum_{i \in I} (\dim W_i) \omega_i - \sum_{i \in I} (\dim V_i) \alpha_i$$
 weight space

irred comps of $\mathcal{L}_Q(V, W) = \dim$ of weight space

Representation theory of $\mathfrak{e}(2)$

Representation theory of $\mathfrak{e}(2)$

• recall e(2) has wild rep type

Representation theory of e(2)

- recall e(2) has wild rep type
- restrict attention to subclasses of modules and attempt a classification

Representation theory of e(2)

- recall e(2) has wild rep type
- restrict attention to subclasses of modules and attempt a classification
- impose restriction on number of generators of a module

Representation theory of e(2)

- recall e(2) has wild rep type
- restrict attention to subclasses of modules and attempt a classification
- impose restriction on number of generators of a module
- moduli spaces of such modules related to Nakajima quiver varieties

Let V be a rep of $\mathfrak{e}(2)$

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

lacktriangle each u_i is a weight vector

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

- \bullet each u_i is a weight vector
- ② $\not\exists$ proper submodule of V containing all u_i

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

- \bullet each u_i is a weight vector

Definition

For $\mathbf{v},\mathbf{w} \in (\mathbb{Z}_{\geq 0})^{\mathbb{Z}}$, let $E(\mathbf{v},\mathbf{w})$ be set of all

$$(V,(u_k^j)_{k\in\mathbb{Z},\,1\leq j\leq \mathbf{w}_k})$$

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

- \bullet each u_i is a weight vector
- \bigcirc \nearrow proper submodule of V containing all u_i

Definition

For $\mathbf{v}, \mathbf{w} \in (\mathbb{Z}_{\geq 0})^{\mathbb{Z}}$, let $E(\mathbf{v}, \mathbf{w})$ be set of all

$$(V,(u_k^j)_{k\in\mathbb{Z},\,1\leq j\leq \mathbf{w}_k})$$

where

• V is an $\mathfrak{e}(2)$ -module with $\dim V = \mathbf{v}$

Let V be a rep of $\mathfrak{e}(2)$

We say $\{u_1, \ldots, u_n\} \subseteq V$ is a set of generators of V if

- \bullet each u_i is a weight vector

Definition

For $\mathbf{v}, \mathbf{w} \in (\mathbb{Z}_{\geq 0})^{\mathbb{Z}}$, let $E(\mathbf{v}, \mathbf{w})$ be set of all

$$(V,(u_k^j)_{k\in\mathbb{Z},\,1\leq j\leq\mathbf{w}_k})$$

where

- V is an $\mathfrak{e}(2)$ -module with $\dim V = \mathbf{v}$
- \bullet $(u_k^j)_{k\in\mathbb{Z},\,1\leq j\leq \mathbf{w}_k}$ is a set of generators of V with wt $u_k^j=k$

Definition

We say

$$(V,(u_k^j))\sim (\tilde{V},(\tilde{u}_k^j))$$

Definition

We say

$$(V,(u_k^j))\sim (\tilde{V},(\tilde{u}_k^j))$$

if $\exists \ e(2)$ -module isom

$$\phi: V \stackrel{\cong}{\longrightarrow} \tilde{V}, \quad \phi(u_k^j) = \tilde{u}_k^j \ \forall j, k$$

Definition

We say

$$(V,(u_k^j))\sim (\tilde{V},(\tilde{u}_k^j))$$

if $\exists \ \mathfrak{e}(2)$ -module isom

$$\phi: V \stackrel{\cong}{\longrightarrow} \tilde{V}, \quad \phi(u_k^j) = \tilde{u}_k^j \ \forall j, k$$

Let

$$\mathcal{E}(\mathbf{v},\mathbf{w}) = E(\mathbf{v},\mathbf{w})/\sim$$

Theorem

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if $\dim V = \mathbf{v}$, $\dim W = \mathbf{w}$

Theorem

The Euclidean group

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if dim V = v, dim W = w

Idea of proof

Given $(V, (u_{\nu}^{j})) \in E(\mathbf{v}, \mathbf{w})$

Theorem

The Euclidean group

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if dim V = v. dim W = w

Idea of proof

Given $(V, (u_{\nu}^{j})) \in E(\mathbf{v}, \mathbf{w})$, define a point $(x, s) \in L_{Q_{\infty}}(V, W)$ by

Theorem

The Euclidean group

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if dim V = v. dim W = w

Idea of proof

Given $(V, (u_{\nu}^{j})) \in E(\mathbf{v}, \mathbf{w})$, define a point $(x, s) \in L_{Q_{\infty}}(V, W)$ by

$$x_{h_i} = p_+|_{V_i}, \quad x_{\overline{h}_i} = p_-|_{V_{i+1}}, \quad k \in \mathbb{Z}$$

 $s(w_k^j) = u_k^j, \quad k \in \mathbb{Z}, \quad 1 \le j \le \mathbf{w}_k$

where $\{w_{\nu}^{j}\}_{1 \leq j \leq \mathbf{w}_{\nu}}$ is a basis of W_{k} .

Theorem

The Euclidean group

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if dim V = v. dim W = w

Idea of proof

Given $(V, (u_{\nu}^{j})) \in E(\mathbf{v}, \mathbf{w})$, define a point $(x, s) \in L_{Q_{\infty}}(V, W)$ by

$$egin{aligned} x_{h_i} &= p_+|_{V_i}, \quad x_{ar{h}_i} &= p_-|_{V_{i+1}}, \quad k \in \mathbb{Z} \ s(w_k^j) &= u_k^j, \quad k \in \mathbb{Z}, \quad 1 \leq j \leq \mathbf{w}_k \end{aligned}$$

where $\{w_{\nu}^{j}\}_{1 \leq i \leq \mathbf{w}_{\nu}}$ is a basis of W_{k} . Then

generating set ↔ stability

Theorem

The Euclidean group

There is a natural one-to-one correspondence

$$\mathcal{E}(\mathbf{v},\mathbf{w}) \leftrightarrow \mathcal{L}_{Q_{\infty}}(V,W)$$

if dim V = v. dim W = w

Idea of proof

Given $(V, (u_{\nu}^{j})) \in E(\mathbf{v}, \mathbf{w})$, define a point $(x, s) \in L_{Q_{\infty}}(V, W)$ by

$$egin{aligned} x_{h_i} &= p_+|_{V_i}, \quad x_{ar{h}_i} &= p_-|_{V_{i+1}}, \quad k \in \mathbb{Z} \ s(w_k^j) &= u_k^j, \quad k \in \mathbb{Z}, \quad 1 \leq j \leq \mathbf{w}_k \end{aligned}$$

where $\{w_{\nu}^{j}\}_{1 \leq i \leq \mathbf{w}_{\nu}}$ is a basis of W_{k} . Then

generating set \leftrightarrow stability $\sim \leftrightarrow G_V$ — orbits

• relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_{∞} (or groups SL(n))

- relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_{∞} (or groups SL(n))
- moduli space of reps of Euclidean group along with a set of generators closely related to rep theory of \mathfrak{sl}_{∞} and SL(n)

- relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_{∞} (or groups SL(n))
- moduli space of reps of Euclidean group along with a set of generators closely related to rep theory of \mathfrak{sl}_{∞} and SL(n)
- although Euclidean group has wild rep type, we have method of approaching classification:

- relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_{∞} (or groups SL(n))
- moduli space of reps of Euclidean group along with a set of generators closely related to rep theory of \mathfrak{sl}_{∞} and SL(n)
- although Euclidean group has wild rep type, we have method of approaching classification:
 - fix cardinality and weights of a generating set

- relationship between rep theory of Euclidean group and rep theory of \mathfrak{sl}_{∞} (or groups SL(n))
- moduli space of reps of Euclidean group along with a set of generators closely related to rep theory of \mathfrak{sl}_{∞} and SL(n)
- although Euclidean group has wild rep type, we have method of approaching classification:
 - fix cardinality and weights of a generating set
 - resulting moduli space enumerated by countable number of varieties – one variety for reps of each graded dimension

Positive characteristic

• consider Euclidean group over field of characteristic p

- consider Euclidean group over field of characteristic p
- ullet weights now lie in $\mathbb{Z}/p\mathbb{Z}$ instead of \mathbb{Z}

- consider Euclidean group over field of characteristic p
- weights now lie in $\mathbb{Z}/p\mathbb{Z}$ instead of \mathbb{Z}
- category of reps equivalent to category of reps of preprojective algebra of quiver of affine type \hat{A}_{p-1}

- consider Euclidean group over field of characteristic p
- ullet weights now lie in $\mathbb{Z}/p\mathbb{Z}$ instead of \mathbb{Z}
- category of reps equivalent to category of reps of preprojective algebra of quiver of affine type \hat{A}_{p-1}
- quiver varieties related to moduli spaces of solutions to anti-self-dual Yang-Mills equations and Hilbert schemes of points in \mathbb{C}^2

Crystals and Jordan-Hölder decompositions

Crystals and Jordan-Hölder decompositions

• can define crystal structure on set of irred comps of Lusztig and Nakajima quiver varieties

Crystals and Jordan-Hölder decompositions

- can define crystal structure on set of irred comps of Lusztig and Nakajima quiver varieties
- each irred comp can be identified with a sequence of crystal operators

Crystals and Jordan-Hölder decompositions

- can define crystal structure on set of irred comps of Lusztig and Nakajima quiver varieties
- each irred comp can be identified with a sequence of crystal operators
- sequence corresponds to Jordan-Hölder decomposition of $\mathfrak{e}(2)$ -modules

Slides/Preprint

Slides: www.mathstat.uottawa.ca/~asavag2

Preprint: arXiv:0712.1597.