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Euclidean group

Definition (Euclidean group)

Group of orientation-preserving isometries of n-dim Euclidean
space:

E (n) = Rn o SO(n)

Study (at least for n = 2, 3) predates even concept of group.

We will focus on E (2) – much still unknown about rep theory.
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Representations of the Euclidean group

E (2) solvable ⇒ all finite-dim irreps are 1-dim

finite-dim unitary reps (of interest in quantum mechanics) are
completely reducible ⇒ isom to direct sum of one-dim reps

infinite-dim unitary reps have received considerable attention

∃ finite-dim nonunitary indecomp reps (not irreducible)

much less known about these
play important role in math physics and rep theory of Poincaré
group
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A little mathematical physics

Poincaré Group

Group of isometries of Minkowski spacetime

Poincaré group = {translations}o Lorentz group

The Little Group (Wigner 1939)

Def: maximal subgroup of Lorentz group leaving invariant the
four-momentum of a particle

governs internal space-time symmetries of particle

massive particles: little group locally isom to O(3)

massless particles: little group locally isom to E (2)
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A bit more mathematical physics

Gravity

Consider

Chern-Simons formulation of Einstein gravity

2 + 1 dimensions

space-time with Euclidean signature

vanishing cosmological constant

Then phase space of gravity is moduli space of flat
E (2)-connections
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The Euclidean algebra

Recall E (2) = R2 o SO(2)

The Euclidean Algebra

e(2) = complexification of Lie alg of E (2)

Has basis {p+, p−, l} and relations

[p+, p−] = 0, [l , p±] = ±p±

Representation Theory

SO(2) compact ⇒ finite-dim E (2)-modules equiv to finite-dim
e(2)-modules where l acts semisimply with integer eigenvalues

We use term e(2)-module to mean such a module
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Weight decompositions

V an e(2)-module

We have weight decomposition into l-eigenspaces

V =
⊕
k∈Z

Vk , Vk = {v ∈ V | l · v = kv}

and
p+Vk ⊆ Vk+1, p−Vk ⊆ Vk−1

We define
dimV = (dim Vk)k∈Z ∈ (Z≥0)

Z
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Modified enveloping algebra

U = universal enveloping algebra of e(2)

U+, U−, U0 subalgebras generated by p+, p−, l

Have triangular decomp U ∼= U+ ⊗ U0 ⊗ U−

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra

Ũ = U+ ⊗

(⊕
k∈Z

Cak

)
⊗ U−

with multiplication
akal = δklak

p+ak = ak+1p+, p−ak = ak−1p−,

p+p−ak = p−p+ak
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Ũ = U+ ⊗

(⊕
k∈Z

Cak

)
⊗ U−

with multiplication
akal = δklak

p+ak = ak+1p+, p−ak = ak−1p−,

p+p−ak = p−p+ak



The Euclidean group Euclidean algebra Preprojective algebras Quiver varieties Conclusion

Modified enveloping algebra

U = universal enveloping algebra of e(2)

U+, U−, U0 subalgebras generated by p+, p−, l

Have triangular decomp U ∼= U+ ⊗ U0 ⊗ U−

Modified enveloping algebra

Following idea of Lusztig, define modified enveloping algebra
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Representation theory

Ũ = U+ ⊗

(⊕
k∈Z

Cak

)
⊗ U−

ak ∼ projection to kth weight space

Definition

A Ũ-module is unital if

1 ∀v ∈ V , akv = 0 for almost all k ∈ Z
2 ∀v ∈ V ,

∑
k∈Z akv = v

Ũ-module ∼ U-module with weight decomp

Proposition

Mod Ũ ∼= ModU ∼= Mod e(2)
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Ũ-module ∼ U-module with weight decomp

Proposition
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Quivers

quiver = directed graph

Q = (I ,H)
I = vertex set
H = (directed) edge set

•out(h) in(h)h //•

Representations of quivers

I -graded vector space V = (Vi )i∈I

linear map xh : Vout(h)→in(h) for each h ∈ H

rep(Q,V ) =
⊕
h∈H

HomC(Vout(h),Vin(h))
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Quivers

The quiver Qa,b

I = {k ∈ Z | a ≤ k ≤ b}
H = {hi | a ≤ i ≤ b − 1}, out(hi ) = i , in(hi ) = i + 1

The quiver Q∞

I = Z
H = {hi | i ∈ Z}, out(hi ) = i , in(hi ) = i + 1
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Path algebra and double quiver

Path algebra

CQ = algebra spanned by paths with multiplication given by
concatenation

cat of reps of Q ∼= Mod CQ

Double quiver

Q∗ = double quiver of Q

IQ∗ = IQ ,

HQ∗ = HQ ∪ H̄Q , H̄Q = {h̄ | h ∈ HQ}

•out(h) in(h)h //• • •out(h) in(h)h̄oo
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•out(h) in(h)h //• • •out(h) in(h)h̄oo
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Preprojective algebra

For i ∈ I , define

ri =
∑

h∈H, out(h)=i

h̄h −
∑

h∈H, in(h)=i

hh̄

Preprojective algebra

P(Q) = CQ∗/J

J = two-sided ideal generated by ri , i ∈ I

Representations of the preprojective algebra

mod(P(Q),V ) = {P(Q)-modules with underlying v.s. V }
Equivalent to set of elements of rep(Q∗,V ) such that∑

h∈H, out(h)=i

xh̄xh −
∑

h∈H, in(h)=i

xhxh̄ = 0 ∀i ∈ I
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Representation theory of the preprojective algebra

Proposition (Crawley-Boevey, Lusztig and others)

The following are equivalent for a quiver Q:

1 P(Q) is finite-dimensional

2 All elements of rep(P(Q),V ) are nilpotent

3 Q is a Dynkin quiver (underlying graph of ADE type)

Proposition

If Q is a finite quiver then

1 P(Q) is of finite rep type iff Q is of Dynkin type An, n ≤ 4

2 P(Q) is of tame rep type iff Q is of Dynkin type A5 or D4

3 P(Q) is of wild rep type for other types
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Representation theory of P(Qa,b) and P(Q∞)

Corollary

Qa,b has finite rep type iff b− a ≤ 3, and all reps are nilpotent

Q∞ is of wild rep type and all reps are nilpotent
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Preprojective algebras and the Euclidean algebra

Theorem

The map ψ : CQ∗∞ → Ũ given by (εi = trivial path at i)

ψ(εi ) = ai , ψ(hi ) = p+ai = ai+1p+, ψ(h̄i ) = aip− = p−ai+1

extends to a surjective map of algebras with kernel J. Thus

P(Q∞) ∼= Ũ

Corollary

Mod e(2) ∼= ModP(Q∞)

and
Moda,b e(2) ∼= ModP(Qa,b)

where Moda,b e(2) is category of e(2)-modules with weights lying
between a and b
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Representation theory of the Euclidean algebra

Theorem

e(2) (and hence E (2)) has wild representation type

for 0 ≤ b − a ≤ 3, ∃ a finite number of isom classes of
indecomposable e(2)-modules whose weights lie between a
and b
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Lusztig quiver variety

Definition (Lusztig quiver variety)

ΛV ,Q is set of all nilpotent (xh) ∈ mod(P(Q),V )

Recall, for Q of Dynkin type

mod(P(Q),V ) = ΛV ,Q

Relation to Kac-Moody algebras

Let gQ = Kac-Moody algebra whose Dynkin graph is underlying
graph of Q.

# irred comps of ΛV ,Q = dim of (−
∑

(dim Vi )αi )-weight space of
U(gQ)−
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Nakajima quiver variety

Let Q be Q∞ or Qa,b.

For I -graded vec spaces V and W , define

LQ(V ,W ) = ΛV ,Q ⊕
⊕
i∈I

HomC(Wi ,Vi )

For (x , s) = ((xh)h∈H , (si )i∈I ) we say

I -graded S ⊆ V is x-invariant if

xh(Sout(h)) ⊆ Sin(h) ∀h ∈ H

(x , s) is stable if 6 ∃ proper x-invariant subspace of V
containing im s

Let LQ(V ,W )st = set of stable points
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Nakajima quiver variety

GV =
∏

i∈I GL(Vi ) acts on LQ(V ,W ) by

g · (x , s) = ((gin(h)xhg
−1
out(h)), (gi si ))

Stabilizer in GV of a stable point is trivial

Definition (Nakajima quiver variety)

LQ(V ,W ) = LQ(V ,W )st/GV
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Nakajima quiver varieties and Kac-Moody algebras

⊕
V

Htop(LQ(V ,W )) ∼= irrep of gQ of hw
∑
i∈I

(dim Wi )ωi

where ωi are fundamental weights

Htop(LQ(V ,W )) =
∑
i∈I

(dim Wi )ωi −
∑
i∈I

(dim Vi )αi weight space

# irred comps of LQ(V ,W ) = dim of weight space
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Representation theory of e(2)

recall e(2) has wild rep type

restrict attention to subclasses of modules and attempt a
classification

impose restriction on number of generators of a module

moduli spaces of such modules related to Nakajima quiver
varieties
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Let V be a rep of e(2)

We say {u1, . . . , un} ⊆ V is a set of generators of V if

1 each ui is a weight vector

2 6 ∃ proper submodule of V containing all ui

Definition

For v,w ∈ (Z≥0)
Z, let E (v,w) be set of all

(V , (uj
k)k∈Z, 1≤j≤wk

)

where

V is an e(2)-module with dimV = v

(uj
k)k∈Z, 1≤j≤wk

is a set of generators of V with wt uj
k = k
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Moduli spaces of representations of e(2)

Theorem

There is a natural one-to-one correspondence

E(v,w) ↔ LQ∞(V ,W )

if dimV = v, dimW = w

Idea of proof

Given (V , (uj
k)) ∈ E (v,w), define a point (x , s) ∈ LQ∞(V ,W ) by

xhi
= p+|Vi

, xh̄i
= p−|Vi+1

, k ∈ Z

s(w j
k) = uj

k , k ∈ Z, 1 ≤ j ≤ wk

where {w j
k}1≤j≤wk

is a basis of Wk . Then

generating set ↔ stability ∼↔ GV − orbits
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Remarks

relationship between rep theory of Euclidean group and rep
theory of sl∞ (or groups SL(n))

moduli space of reps of Euclidean group along with a set of
generators closely related to rep theory of sl∞ and SL(n)

although Euclidean group has wild rep type, we have method
of approaching classification:

fix cardinality and weights of a generating set
resulting moduli space enumerated by countable number of
varieties – one variety for reps of each graded dimension
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Further directions

Positive characteristic

consider Euclidean group over field of characteristic p

weights now lie in Z/pZ instead of Z

category of reps equivalent to category of reps of preprojective
algebra of quiver of affine type Âp−1

quiver varieties related to moduli spaces of solutions to
anti-self-dual Yang-Mills equations and Hilbert schemes of
points in C2
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Further directions

Crystals and Jordan-Hölder decompositions

can define crystal structure on set of irred comps of Lusztig
and Nakajima quiver varieties

each irred comp can be identified with a sequence of crystal
operators

sequence corresponds to Jordan-Hölder decomposition of
e(2)-modules
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